Short-term Forecasting Ground Magnetic Perturbations with the

Space Weather Modeling Framework

D. T. Welling¹, G. Toth¹, T. I. Gombosi¹,

H. Singer², G. Millward², C. Balch²

¹University of Michigan Center for Space Environment Modeling

²NOAA Space Weather Prediction Center

Space Weather Modeling Framework

Operational SWMF/Geospace

Predictive

45 minute lead time with modest computer resources.

Robust

Can operate for prolonged periods without failure.

Relevant

Predicts ground *dB/dt*, spacecraft fluxes, magnetopause location, many more.

SWMF Virtual Magnetometers

Biot-Savart integral of four current systems

MHD: Global MHD & "gap region" currents

Ionosphere: Hall and Pedersen currents

SWPC/CCMC Challenge

SWPC & NASA's CCMC teamed up to evaluate GIC predictive capabilities.

- 5 models evaluated for 6 storm events.
- Tested ability to predict ground |dB/dt| from upstream solar conditions.
- Models run at CCMC.

SWPC/CCMC Challenge

Result of SWPC/CCMC challenge was selection of SWMF for operational use.

- Model to run 24/7 on NOAA machines.
- Small NOAA/Umich contract to support SWMF R2O transition.
- 30-day test run on NCEP machines complete.

New Operational Products

"Magnetometer Grids" enable global prediction.

- Can interpolate results to arbitrary locations.
- 5° × 5°
 separation
 yields accurate predictions.
- Enables virtual indices (K_P, AE). 30°N

Simulating Extremes

Code Optimization

SWPC-Umich partnership enables code optimization work that is otherwise unfunded.

Old method: virtual magnetometer calculation dominated total run time.

New method: now ~25% of operational execution time.

Automated Validation

0.576 (+0.080)

1.1 [nT/s]

0.476 (+0.039)

10

SWPCTEST: A push-button recreation of the entire *Pulkkinen et al.* [2013] study.

- Single command to compile & execute sixevent simulation suite on supercomputer cluster.
- Produces all metrics presented in *Pulkkinen et*| 1/20131 & compares to 2013 version of code |
 | Threshold | POD | POFD | HSS |
 | 0.3 [nT/s] | 0.754 (+0.061) | 0.181 (+0.011) | 0.517 (+0.058) |
 | 0.7 [nT/s] | 0.637 (+0.073) | 0.144 (+0.032) | 0.500 (+0.036) |

$1.5[\mathrm{nT/s}]$	0.507 (+0.094)	$0.100 \; (+0.027)$	$0.434 \ (+0.047)$

0.121 (+0.028)

Table 1: Performance metrics for the SWMF.

St. Patrick's Day Storm

St. Patrick's Day Storm

Summary

The SWMF has shown tremendous value as an operational tool.

- #1 in SWPC challenge metrics, but validation for all models is an ongoing process.
- Robust, faster-than-real-time execution.

Research-to-operations progressing well.

Model has passed NOAA/NCEP 30-day test.

SWPC-Umich partnership has been a mutually beneficial relationship.

- Enables work that is otherwise unfunded.
- Efforts have had immediate O2R impact.